If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-10a-85=0
a = 1; b = -10; c = -85;
Δ = b2-4ac
Δ = -102-4·1·(-85)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{110}}{2*1}=\frac{10-2\sqrt{110}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{110}}{2*1}=\frac{10+2\sqrt{110}}{2} $
| 2(3m-5)=6m-10 | | x21=4(21)-3 | | 736373j=474848=9 | | 32•8=x | | 3k-38=6(-2k-3)-5k | | 2×+6y=5 | | 2.75×x=80 | | 10+6=t | | 8y-16=-2y+20 | | 2(d+1)=-2 | | 2-2x3+3=3 | | 6g=-86g=16 | | 3t-12=69 | | k+20=26 | | K2+12k+9=0 | | 2a+3(3a+1)=25 | | (4-x)(5x-3)=0 | | y=350(1.75)^5 | | 4x-x+1=-2 | | 1.6=15.20x | | 38.48+0.50=c | | 5(x+6)=x=74 | | 6m-32=-4(m+8) | | (-b)-2=-5 | | 7*x-10.75=6.8*x+.95 | | 5n2+14n=-8 | | 7(3x+17)=161 | | 4.8+1.5n=0.60 | | 0.008(6-k)+0.04(k-8)=1 | | 0.04(x-190)=240 | | (6r+5)(3r-7)=1180 | | 9+3(a-2)=15 |